An HP 2 -bundle over S 4 with nontrivial Â-genus

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steiner 2-designs S(2, 4, 28) with Nontrivial Automorphisms

In this article designs with parameters S(2, 4, 28) and nontrivial automorphism groups are classified. A total of 4466 designs were found. Together with some S(2, 4, 28)’s with trivial automorphism groups found by A.Betten, D.Betten and V.D.Tonchev this sums up to 4653 nonisomorphic S(2, 4, 28) designs.

متن کامل

The Steiner systems S(2, 4, 25) with nontrivial automorphism group

There are exactly 16 non-isomorphic Steiner systems S(2,4, 25) with nontrivial automorphism group. It is interesting to note that each of these designs has an automorphism of order 3. These 16 designs are presented along with their groups and other invariants. In particular, we determine and tabulate substructures for each of the sixteen designs inciuding Fano subplanes, ovals, complete 5-arcs,...

متن کامل

The Heegaard Genus of Bundles over S

This is a largely expository paper exploring theorems of Rubinstein and Lackenby. Rubinstein’s Theorem studies the Heegaard genus of certain hyperbolic 3-manifolds that fiber over S and Lackenby’s Theorem studies the Heegaard genus of certain Haken manifolds. Our target audience are 3-manifold theorists with good understanding of Heegaard splittings but perhaps little experience with minimal su...

متن کامل

Every Nontrivial Knot in S Has Nontrivial A-polynomial

We show that every nontrivial knot in the 3-sphere has a nontrivial A-polynomial. In Theorem 1 of [3], Kronheimer and Mrowka give a proof of the following remarkable theorem, thereby establishing the truth of the Property P conjecture. Theorem 0.1 (Kronheimer-Mrowka). Let K be any nontrivial knot in S and let M(r) be the manifold obtained by Dehn surgery on K with slope r with respect to the st...

متن کامل

Some Results Concerning Voronoi ' s Continued Fraction Over â ( v * D )

Let D be a cube-free integer and let eq be the fundamental unit of the pure cubic field S(Vfl ). It is well known that Voronoi's algorithm can be used to determine e0. In this work several results concerning Voronoi's algorithm in â(Vfl ) are derived and it is shown how these results can be used to increase the speed of calculating «0 for many values of D. Among these D values are those such th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus. Mathématique

سال: 2021

ISSN: 1778-3569

DOI: 10.5802/crmath.156